Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2321242121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507448

RESUMO

All biological hydroxylation reactions are thought to derive the oxygen atom from one of three inorganic oxygen donors, O2, H2O2, or H2O. Here, we have identified the organic compound prephenate as the oxygen donor for the three hydroxylation steps of the O2-independent biosynthetic pathway of ubiquinone, a widely distributed lipid coenzyme. Prephenate is an intermediate in the aromatic amino acid pathway and genetic experiments showed that it is essential for ubiquinone biosynthesis in Escherichia coli under anaerobic conditions. Metabolic labeling experiments with 18O-shikimate, a precursor of prephenate, demonstrated the incorporation of 18O atoms into ubiquinone. The role of specific iron-sulfur enzymes belonging to the widespread U32 protein family is discussed. Prephenate-dependent hydroxylation reactions represent a unique biochemical strategy for adaptation to anaerobic environments.


Assuntos
Ácidos Cicloexanocarboxílicos , Cicloexenos , Escherichia coli , Ubiquinona , Hidroxilação , Ubiquinona/metabolismo , Escherichia coli/metabolismo , Oxigênio/metabolismo
2.
mBio ; 14(4): e0329822, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37283518

RESUMO

Isoprenoid quinones are essential for cellular physiology. They act as electron and proton shuttles in respiratory chains and various biological processes. Escherichia coli and many α-, ß-, and γ-proteobacteria possess two types of isoprenoid quinones: ubiquinone (UQ) is mainly used under aerobiosis, while demethylmenaquinones (DMK) are mostly used under anaerobiosis. Yet, we recently established the existence of an anaerobic O2-independent UQ biosynthesis pathway controlled by ubiT, ubiU, and ubiV genes. Here, we characterize the regulation of ubiTUV genes in E. coli. We show that the three genes are transcribed as two divergent operons that are both under the control of the O2-sensing Fnr transcriptional regulator. Phenotypic analyses using a menA mutant devoid of DMK revealed that UbiUV-dependent UQ synthesis is essential for nitrate respiration and uracil biosynthesis under anaerobiosis, while it contributes, though modestly, to bacterial multiplication in the mouse gut. Moreover, we showed by genetic study and 18O2 labeling that UbiUV contributes to the hydroxylation of ubiquinone precursors through a unique O2-independent process. Last, we report the crucial role of ubiT in allowing E. coli to shift efficiently from anaerobic to aerobic conditions. Overall, this study uncovers a new facet of the strategy used by E. coli to adjust its metabolism on changing O2 levels and respiratory conditions. This work links respiratory mechanisms to phenotypic adaptation, a major driver in the capacity of E. coli to multiply in gut microbiota and of facultative anaerobic pathogens to multiply in their host. IMPORTANCE Enterobacteria multiplication in the gastrointestinal tract is linked to microaerobic respiration and associated with various inflammatory bowel diseases. Our study focuses on the biosynthesis of ubiquinone, a key player in respiratory chains, under anaerobiosis. The importance of this study stems from the fact that UQ usage was for long considered to be restricted to aerobic conditions. Here we investigated the molecular mechanism allowing UQ synthesis in the absence of O2 and searched for the anaerobic processes that UQ is fueling in such conditions. We found that UQ biosynthesis involves anaerobic hydroxylases, that is, enzymes able to insert an O atom in the absence of O2. We also found that anaerobically synthesized UQ can be used for respiration on nitrate and the synthesis of pyrimidine. Our findings are likely to be applicable to most facultative anaerobes, which count many pathogens (Salmonella, Shigella, and Vibrio) and will help in unraveling microbiota dynamics.


Assuntos
Escherichia coli , Ubiquinona , Animais , Camundongos , Escherichia coli/metabolismo , Nitratos/metabolismo , Quinonas/metabolismo , Terpenos/metabolismo
3.
Metallomics ; 14(5)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35349713

RESUMO

Iron-sulfur (Fe-S) clusters are inorganic ubiquitous and ancient cofactors. Fe-S-bound proteins contribute to most cellular processes, including DNA replication and integrity, genetic expression and regulation, metabolism, biosynthesis, and most bioenergetics systems. Also, Fe-S proteins hold a great biotechnological potential in metabolite and chemical production, including antibiotics. From classic biophysics and spectroscopy methodologies to recent development in bioinformatics, including structural modeling and chemoproteomics, our capacity to predict and identify Fe-S proteins has spectacularly increased over the recent years. Here, these developments are presented and collectively used to update the composition of Escherichia coli Fe-S proteome, for which we predict 181 occurrences, i.e. 40 more candidates than in our last catalog, and equivalent to 4% of its total proteome. Besides, Fe-S clusters can be targeted by redox active compounds or reactive oxygen and nitrosative species, and even be destabilized by contaminant metals. Accordingly, we discuss how cells handle damaged Fe-S proteins, i.e. degradation, recycling, or repair.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas Ferro-Enxofre , Proteoma , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteoma/metabolismo
4.
J Biol Chem ; 298(2): 101384, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748728

RESUMO

The molybdenum/tungsten-bis-pyranopterin guanine dinucleotide family of formate dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting because of their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates used by partner subunits interacting with the catalytic hub. Here, we unveiled two noncanonical FDHs in Bacillus subtilis, which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the formate oxidoreductase catalytic subunit interacts with an unprecedented partner subunit, formate oxidoreductase essential subunit, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The formate oxidoreductase essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic molybdenum/bis-pyranopterin guanine dinucleotide cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a noncanonical FDH, which differs in terms of architecture, amino acid conservation around the molybdenum cofactor, and reactivity.


Assuntos
Formiato Desidrogenases , Molibdênio , Vitamina K 2 , Espectroscopia de Ressonância de Spin Eletrônica , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Guanina/metabolismo , Molibdênio/química , Vitamina K 2/química , Vitamina K 2/metabolismo
5.
Chemphyschem ; 18(19): 2704-2714, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28681474

RESUMO

In vivo specific isotope labeling at the residue or substituent level is used to probe menasemiquinone (MSK) binding to the quinol oxidation site of respiratory nitrate reductase A (NarGHI) from E. coli. 15 N selective labeling of His15 Nδ or Lys15 Nζ in combination with hyperfine sublevel correlation (HYSCORE) spectroscopy unambiguously identified His15 Nδ as the direct hydrogen-bond donor to the radical. In contrast, an essentially anisotropic coupling to Lys15 Nζ consistent with a through-space magnetic interaction was resolved. This suggests that MSK does not form a hydrogen bond with the side chain of the nearby Lys86 residue. In addition, selective 2 H labeling of the menaquinone methyl ring substituent allows unambiguous characterization of the 2 H-and hence of the 1 H-methyl isotropic hyperfine coupling by 2 H HYSCORE. DFT calculations show that a simple molecular model consisting of an imidazole Nδ atom in a hydrogen-bond interaction with a MSK radical anion satisfactorily accounts for the available spectroscopic data. These results support our previously proposed one-sided binding model for MSK to NarGHI through a single short hydrogen bond to the Nδ of His66, one of the distal heme axial ligands. This work establishes the basis for future investigations aimed at determining the functional relevance of this peculiar binding mode.

6.
EMBO J ; 36(3): 301-318, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011580

RESUMO

In bacteria, chromosome dynamics and gene expression are modulated by nucleoid-associated proteins (NAPs), but little is known about how NAP activity is coupled to cell cycle progression. Using genomic techniques, quantitative cell imaging, and mathematical modeling, our study in Caulobacter crescentus identifies a novel NAP (GapR) whose activity over the cell cycle is shaped by DNA replication. GapR activity is critical for cellular function, as loss of GapR causes severe, pleiotropic defects in growth, cell division, DNA replication, and chromosome segregation. GapR also affects global gene expression with a chromosomal bias from origin to terminus, which is associated with a similar general bias in GapR binding activity along the chromosome. Strikingly, this asymmetric localization cannot be explained by the distribution of GapR binding sites on the chromosome. Instead, we present a mechanistic model in which the spatiotemporal dynamics of GapR are primarily driven by the progression of the replication forks. This model represents a simple mechanism of cell cycle regulation, in which DNA-binding activity is intimately linked to the action of DNA replication.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Ciclo Celular , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/metabolismo , Genômica , Modelos Teóricos , Imagem Óptica , Ligação Proteica , Análise Espaço-Temporal
7.
Sci Rep ; 6: 37743, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886223

RESUMO

A major gap of knowledge in metalloproteins is the identity of the prefolded state of the protein before cofactor insertion. This holds for molybdoenzymes serving multiple purposes for life, especially in energy harvesting. This large group of prokaryotic enzymes allows for coordination of molybdenum or tungsten cofactors (Mo/W-bisPGD) and Fe/S clusters. Here we report the structural data on a cofactor-less enzyme, the nitrate reductase respiratory complex and characterize the conformational changes accompanying Mo/W-bisPGD and Fe/S cofactors insertion. Identified conformational changes are shown to be essential for recognition of the dedicated chaperone involved in cofactors insertion. A solvent-exposed salt bridge is shown to play a key role in enzyme folding after cofactors insertion. Furthermore, this salt bridge is shown to be strictly conserved within this prokaryotic molybdoenzyme family as deduced from a phylogenetic analysis issued from 3D structure-guided multiple sequence alignment. A biochemical analysis with a distantly-related member of the family, respiratory complex I, confirmed the critical importance of the salt bridge for folding. Overall, our results point to a conserved cofactors insertion mechanism within the Mo/W-bisPGD family.


Assuntos
Metaloproteínas/metabolismo , Molibdênio/metabolismo , Nitrato Redutase/metabolismo , Sequência de Aminoácidos , Metaloproteínas/química , Nitrato Redutase/química , Oxirredução , Dobramento de Proteína , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
8.
Adv Microb Physiol ; 61: 217-66, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23046955

RESUMO

Prokaryotes are characterized by an extreme flexibility of their respiratory systems allowing them to cope with various extreme environments. To date, supramolecular organization of respiratory systems appears as a conserved evolutionary feature as supercomplexes have been isolated in bacteria, archaea, and eukaryotes. Most of the yet identified supercomplexes in prokaryotes are involved in aerobic respiration and share similarities with those reported in mitochondria. Supercomplexes likely reflect a snapshot of the cellular respiration in a given cell population. While the exact nature of the determinants for supramolecular organization in prokaryotes is not understood, lipids, proteins, and subcellular localization can be seen as key players. Owing to the well-reported supramolecular organization of the mitochondrial respiratory chain in eukaryotes, several hypotheses have been formulated to explain the consequences of such arrangement and can be tested in the context of prokaryotes. Considering the inherent metabolic flexibility of a number of prokaryotes, cellular distribution and composition of the supramolecular assemblies should be studied in regards to environmental signals. This would pave the way to new concepts in cellular respiration.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Metabolismo dos Lipídeos , Substâncias Macromoleculares/metabolismo , Oxigênio/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Evolução Biológica , Transporte Biológico , Mitocôndrias/genética , Mitocôndrias/metabolismo
9.
Biochim Biophys Acta ; 1817(10): 1937-49, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22561115

RESUMO

The structural and functional integrity of biological membranes is vital to life. The interplay of lipids and membrane proteins is crucial for numerous fundamental processes ranging from respiration, photosynthesis, signal transduction, solute transport to motility. Evidence is accumulating that specific lipids play important roles in membrane proteins, but how specific lipids interact with and enable membrane proteins to achieve their full functionality remains unclear. X-ray structures of membrane proteins have revealed tight and specific binding of lipids. For instance, cardiolipin, an anionic phospholipid, has been found to be associated to a number of eukaryotic and prokaryotic respiratory complexes. Moreover, polar and septal accumulation of cardiolipin in a number of prokaryotes may ensure proper spatial segregation and/or activity of proteins. In this review, we describe current knowledge of the functions associated with cardiolipin binding to respiratory complexes in prokaryotes as a frame to discuss how specific lipid binding may tune their reactivity towards quinone and participate to supercomplex formation of both aerobic and anaerobic respiratory chains. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias , Cardiolipinas , Proteínas de Membrana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Cristalografia por Raios X , Flavoproteínas Transferidoras de Elétrons , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
10.
J Biol Chem ; 287(7): 4662-70, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22190684

RESUMO

Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (Q(D)) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the Q(D) site (MSQ(D)) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with (1)H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQ(D) binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme b(D). Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the Q(D) site are discussed, in light of the unusually high thermodynamic stability of MSQ(D).


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Nitrato Redutase/química , Plastoquinona/análogos & derivados , Prótons , Medição da Troca de Deutério , Espectroscopia de Ressonância de Spin Eletrônica , Estabilidade Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligação de Hidrogênio , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Plastoquinona/química , Plastoquinona/metabolismo
11.
Proc Natl Acad Sci U S A ; 108(19): 7781-6, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518899

RESUMO

Anionic lipids play a variety of key roles in membrane function, including functional and structural effects on respiratory complexes. However, little is known about the molecular basis of these lipid-protein interactions. In this study, NarGHI, an anaerobic respiratory complex of Escherichia coli, has been used to investigate the relations in between membrane-bound proteins with phospholipids. Activity of the NarGHI complex is enhanced by anionic phospholipids both in vivo and in vitro. The anionic cardiolipin tightly associates with the NarGHI complex and is the most effective phospholipid to restore functionality of a nearly inactive detergent-solubilized enzyme complex. A specific cardiolipin-binding site is identified on the basis of the available X-ray diffraction data and of site-directed mutagenesis experiment. One acyl chain of cardiolipin is in close proximity to the heme b(D) center and is responsible for structural adjustments of b(D) and of the adjacent quinol substrate binding site. Finally, cardiolipin binding tunes the interaction with the quinol substrate. Together, our results provide a molecular basis for the activation of a bacterial respiratory complex by cardiolipin.


Assuntos
Cardiolipinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multienzimáticos/metabolismo , Nitrato Redutase/metabolismo , Sítios de Ligação , Cardiolipinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Heme/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrato Redutase/química , Nitrato Redutase/genética , Oxirredutases/química , Oxirredutases/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteolipídeos/metabolismo , Eletricidade Estática
12.
Proc Natl Acad Sci U S A ; 107(23): 10436-41, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20484676

RESUMO

Cellular energy generation uses membrane-localized electron transfer chains for ATP synthesis. Formed ATP in turn is consumed for the biosynthesis of cellular building blocks. In contrast, heme cofactor biosynthesis was found driving ATP generation via electron transport after initial ATP consumption. The FMN enzyme protoporphyrinogen IX oxidase (HemG) of Escherichia coli abstracts six electrons from its substrate and transfers them via ubiquinone, cytochrome bo(3) (Cyo) and cytochrome bd (Cyd) oxidase to oxygen. Under anaerobic conditions electrons are transferred via menaquinone, fumarate (Frd) and nitrate reductase (Nar). Cyo, Cyd and Nar contribute to the proton motive force that drives ATP formation. Four electron transport chains from HemG via diverse quinones to Cyo, Cyd, Nar, and Frd were reconstituted in vitro from purified components. Characterization of E. coli mutants deficient in nar, frd, cyo, cyd provided in vivo evidence for a detailed model of heme biosynthesis coupled energy generation.


Assuntos
Escherichia coli/metabolismo , Heme/biossíntese , Biocatálise , Grupo dos Citocromos b/metabolismo , Transporte de Elétrons , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Flavinas/metabolismo , Modelos Moleculares , Mutação , Nitrato Redutase/metabolismo , Estrutura Terciária de Proteína , Protoporfirinogênio Oxidase/química , Protoporfirinogênio Oxidase/metabolismo
13.
J Am Chem Soc ; 132(17): 5942-3, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20387886

RESUMO

Through the use of an Escherichia coli strain deficient in menaquinone biosynthesis, purified nitrate reductase A (NarGHI)-enriched inner membrane vesicles were titrated and monitored by electron paramagnetic resonance (EPR) spectroscopy, revealing the formation of protein-bound ubisemiquinone (USQ) species. Two-dimensional ESEEM (HYSCORE) experiments on these radicals revealed the same magnetic interaction with an (14)N nucleus as found for menasemiquinone stabilized at the Q(D) site of E. coli NarGHI and assigned to His66 N(delta), a distal heme axial ligand. Moreover, this signature was lost in the NarGHI(H66Y) mutant, which is known to be unable to react with quinols. These findings demonstrate that NarGHI-bound USQ can be formed and detected by EPR. They also provide the first direct experimental evidence for similar binding of natural menasemiquinones and ubisemiquinones within the same protein Q site of NarGHI.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Nitrato Redutase/química , Ubiquinona/análogos & derivados , Vitamina K 2/química , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Ubiquinona/química
14.
J Biol Chem ; 285(1): 179-87, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19892705

RESUMO

The membrane-bound heterotrimeric nitrate reductase A (NarGHI) catalyzes the oxidation of quinols in the cytoplasmic membrane of Escherichia coli and reduces nitrate to nitrite in the cytoplasm. The enzyme strongly stabilizes a menasemiquinone intermediate at a quinol oxidation site (Q(D)) located in the vicinity of the distal heme b(D). Here molecular details of the interaction between the semiquinone radical and the protein environment have been provided using advanced multifrequency pulsed EPR methods. (14)N and (15)N ESEEM and HYSCORE measurements carried out at X-band ( approximately 9.7 GHz) on the wild-type enzyme or the enzyme uniformly labeled with (15)N nuclei reveal an interaction between the semiquinone and a single nitrogen nucleus. The isotropic hyperfine coupling constant A(iso)((14)N) approximately 0.8 MHz shows that it occurs via an H-bond to one of the quinone carbonyl group. Using (14)N ESEEM and HYSCORE spectroscopies at a lower frequency (S-band, approximately 3.4 GHz), the (14)N nuclear quadrupolar parameters of the interacting nitrogen nucleus (kappa = 0.49, eta = 0.50) were determined and correspond to those of a histidine N(delta), assigned to the heme b(D) ligand His-66 residue. Moreover S-band (15)N ESEEM spectra enabled us to directly measure the anisotropic part of the nitrogen hyperfine interaction (T((15)N) = 0.16 MHz). A distance of approximately 2.2 Abetween the carbonyl oxygen and the nitrogen could then be calculated. Mechanistic implications of these results are discussed in the context of the peculiar properties of the menasemiquinone intermediate stabilized at the Q(D) site of NarGHI.


Assuntos
Benzoquinonas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Nitrato Redutase/metabolismo , Nitrogênio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Isótopos de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...